
Java Meets Numerical Analysis
Review of Java Number Cruncher: The Java Programmer’s Guide to Numerical

Computing by Ronald Mak
Review by David H. Bailey, Lawrence Berkeley National Laboratory

To appear in Scientific Programming

Introduction
Java for numerical computing? Are you kidding!? Until recently, such a combination

would indeed draw well-deserved howls of laughter from serious practitioners of numerical
computing. The huge overhead of Java’s traditional interpreted-code implementation has
resulted in run times that have been typically at least an order of magnitude higher
than traditional languages such as Fortran-90 or C/C++. As a result, Java has been a
non-starter for large, numerically intensive scientific computation.

But times are changing. Partly because of the extensive interest in Java programming
in the business and Internet world, “just-in-time” compilers and the like have been devel-
oped that result in much faster execution times, nearly competitive with C and Fortran
code in many cases. As a result, computational scientists are now seriously looking at
potential uses of Java for scientific computing. But who is going to write scientific Java?
Perhaps some numerical scientists will become proficient in Java. But maybe we should
also try to teach Java programmers the basics of numerical computing. Indeed, given
the increasing scarcity of computer science graduates who are also trained in numerical
analysis, perhaps this is a more realistic route to take.

Ronald Mak’s book is very timely in this regard. It is targeted directly at beginning
(or even not-so-beginning) Java programmers who would like to become familiar with
numerical computing. It does not pretend to be an traditional course in numerical analy-
sis, which quite frankly many present-day computer science undergraduates avoid like the
plague. Rather, it teaches Java programmers what they need to know to be numerically
literate, so as to be equipped to take on serious technical computing tasks when needed.

The book starts out by describing in detail the IEEE-754 floating-point standard, both
single and double formats. The author first drives home the point that IEEE arithmetic
is not the same as the real number system—for example, there is potential for significant
loss of accuracy when two nearby floating-point values are subtracted. The book contin-
ues with topics such as the potential for difficulties when a large number of floating-point
values of different sizes are summed, finding roots of equations using basic iterative tech-
niques such as Newton’s iteration, finding interpolating and data-fitting polynomials, and
linear regression.

Chapter 7, for example, discusses the trapezoidal rule and Simpson’s rule for integra-
tion. It also presents techniques for numerical solutions to differential equations, including
Euler’s method and the Runge-Kutta scheme. Again, the restraint that the author exer-
cises here is remarkable. I’m sure that most numerical analysts writing such a book could
not resist the temptation to include here a furtive write-up of their favorite advanced

1



techniques, say for numerical quadrature. Space could also have been devoted to detailed
discussion of techniques for numerical solutions of 2-D and 3-D partial differential equa-
tions. Instead, Mak continues to stick to his formula of providing a very detailed and
readable account of basic numerical methods.

Beginning in Chapter 9, the author discusses matrix computations. Here, as in some
previous chapters, the author provides a Java software package, which in this case is for
matrix operations. With this facility, the author can focus on the concepts of matrix
computation rather than on the detailed mechanics of carrying out such computations.
Issues such as matrix condition numbers are discussed in Chapter 11. Even here, the focus
is on concepts rather than on theorems, proofs or advanced implementation techniques.

Part IV (beginning with Chapter 12), entitled “The Joys of Computation,” starts out
by saying “Numerical computation isn’t all work and no play.” In these chapters the
author gives several examples of computations using a “BigNumber” and a “BigDecimal”
package, which perform high-precision integer and floating-point computation, respec-
tively. Some of us would choose to differ with Mak’s characterization of this material
as “play,” since in recent years numerous important mathematical and scientific results
have been obtained using such high-precision computations. Besides, much of our In-
ternet commerce relies on security schemes based on high-precision arithmetic. In any
event, this material is actually quite well written. The author covers topics such as large
integer factorizations, computing mathematical constants and functions to high precision
and fractals.

In summary, this book would make an excellent undergraduate course in numerical
computing, suitable for a wide range of students in computer science, physical science
and engineering. It is also very well suited to professional Java programmers who would
like to become more familiar with the world of scientific computing. It has a practical,
down-to-earth approach that avoids exotic material, opting instead for a thorough and
understandable coverage of basic material. It includes (and in fact relies on) software
available from a website.

Many students or other readers, after completing Mak’s book, will continue their
careers with a greater appreciation of the issues and techniques of numerical comput-
ing, although perhaps they will not specialize in this arena. Others may find the topic
sufficiently engaging that they will pursue more serious coursework and career paths in
scientific computing. Either way, the computational science community will be enriched
as a result.

2


